Abstract

Abstract Wettability of the rock is an important parameter in determining oil recovery. It determines the fluid behavior and the fluid distribution in the reservoir. Aging of the rock changes the wettability of the rock and can affect the residual oil saturation. This paper investigates the effect of aging on the oil recovery during the Water-Alternating-CO2 injection (WACO2) process using 20 in. outcrop Grey Berea sandstone cores under immiscible conditions. In the present work, two coreflood experiments were performed. Both cores were aged for a period of 30 days at 149°F. This study is a continued research and compares the performance of WACO2 injection in aged cores to previously published work with unaged cores. All experiments were done at 500 psi and in the secondary recovery mode. The wettability of the Rock- Brine-CO2-Oil system for aged cores was determined by contact angle measurements using formation brine (174,156 ppm), seawater brine (54,680 ppm) and low-salinity brine (5,000 ppm NaCl). The interfacial tension (IFT) of the Brine-Oil-N2 and Brine-Oil-CO2 system was also measured using the axisymmetric drop shape analysis (ADSA) method. Computerized tomography (CT) scans were obtained for each core in its various states: dry state, 100% water-saturated state, oil saturated state with irreducible water saturation, and residual oil-saturated state. The CT scans were used to determine the porosity profile of the cores. The contact angle measurements of the Rock - Brine - CO2 - Oil system indicated an increase in contact angles after the aging of the cores. Low-salinity brine showed the most water-wet state (55°) and seawater brine showed the most oil-wet state (96°) of the rock. This may be because of the increased concentration of divalent ions on the surface of the rock during seawater brine injection. Ion binding is the dominant mechanism in the oil-wet nature of the rock. The previously published work stated that the coreflood experiments of the unaged cores resulted in an oil recovery of 61.7 and 64.6% OOIP during low-salinity water-alternating-CO2 and seawater-alternating-CO2 injection, respectively. In aged cores, the oil recovery increased to 97.7 and 76.1% OOIP during the low-salinity water-alternating-CO2 and seawater-alternating-CO2 injection, respectively. The improved oil recovery was attributed to the wettability alteration when the rock was aged. The interfacial tension measurements of brine/oil/nitrogen and brine/oil/CO2 systems showed that the salinity of the brine had an effect on the IFT. Low-salinity brine (5,000 ppm) yielded the highest IFT values and seawater brine produced the least. Monovalent ions had a weak effect on the interfacial activity between the oil and the brine. When multivalent ions were present, the IFT values were influenced by the salting effect of the brines. During the IFT measurements of brine/oil/CO2 system, the IFT values showed an increasing trend as a function of time and then stabilized. The increase in IFT was because of the initial mass transfer between the CO2, brine, and oil phases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call