Abstract
The purpose of the present study was to compare the effects of risedronate (RIS) and alfacalcidol (ALF) on the cortical and cancellous bone mass and mechanical properties in ovariectomized rats in a head-to-head fashion. Forty female Sprague-Dawley rats, 7 mo of age, were randomized into six groups: the sham-operated control (Sham) group, and five ovariectomized groups: treated with vehicle, RIS (0.1, 1.0, or 2.5 mg/kg, p.o., daily), and ALF (0.5 microg/kg, p.o., daily). At the end of the 8-wk experimental period, bone histomorphometric analyses of the cancellous bone of the proximal tibial metaphysis and cortical bone of the tibial disphysis was performed, and the mechanical properties of the bone were evaluated at the femoral distal metaphysis (FDM) and femoral diaphysis (FD). RIS prevented the decrease in the cancellous bone volume/total tissue volume (BV/TV) noted in ovariectomized rats in a dose-dependent manner, by suppressing increases in cancellous bone formation and resorption, without any apparent effect on the Ct Ar or maximum load of the FDM or FD. On the other hand, ALF increased the cancellous BV/TV, Ct Ar, and maximum load of the FDM or FD, by mildly decreasing cancellous bone formation and resorption, increasing periosteal and endocortical bone formation, and preventing an increase in endocortical bone resorption. Thus, the present study clearly showed that RIS and ALF had differential effects on the cortical and cancellous bone mass and mechanical properties in ovariectomized rats.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.