Abstract

A significant source of unburned hydrocarbon emissions from internal combustion engines originates from the flow of unburned fuel/air mixture into and out of crevices in the piston-cylinder-ring assembly. During compression, fuel vapor flows into crevice regions. After top dead center, the trapped fuel vapor that returns into the cylinder escapes complete oxidation and contributes to unburned hydrocarbon emissions. In this work, the crevice flow model developed by Namazian and Heywood is implemented into KIVA-II, a multidimensional, reacting flow code. Two-dimensional, axisymmetric simulations are then performed for a 2.5 liter gasoline engine to investigate the effects of engine speed and selected piston-ring design parameters on crevice flows and on unburned hydrocarbon emissions. Results suggest that engine-out unburned hydrocarbon emissions can be reduced by optimizing the ring end gap area and the piston-cylinder side clearance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.