Abstract

Domes are efficient structural systems for long clear-span buildings. The introduction of laminated timber highlighted the economic advantages of this material and led to the use of timber domes even for very large spans. In this paper, reticulated timber domes of triangular network shape with decking and bottom tension ring are considered. These types of domes have high stiffness in all directions along the surface and are kinematically stable. The dome is subjected to uniformly distributed load over the entire structure. The dome model is generated with a preprocessor program called DOME-IN and analysed with ABAQUS. The focus of this paper is to evaluate the behaviour of reticulated timber domes with respect to different stiffnesses of the bottom ring beam, here defined as a non-dimensional ring beam area parameter Ar*, which is shown to be a very well adapted design parameter for the ring beam. As far as global buckling is concerned, the critical pressure is sensitive to the bottom ring beam stiffness only if the latter is within a certain range. In terms of design, the stiffness of the ring beam should exceed A* > 2 in order to utilise the full buckling load capacity of the dome system itself. The maximum deflection, normal forces and bending moments versus the ring beam area parameter are also evaluated. The maximum values of the deflection and the internal actions next to the bottom ring are very sensitive to the bottom ring beam stiffness only if the latter is less than about Ar* < 10. A recommended value for the design of the bottom ring beam is A* > 20.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.