Abstract

Greenhouse vegetable-rice crop rotations have rapidly expanded in the southeast of China in recent years. However, how rice planting affects nutrient accumulation and transfer in soils during plastic greenhouse vegetable cultivation is still poorly understood. The aim of this research was to characterize the nutrient accumulation and vertical distribution of greenhouse soil under long-term greenhouse vegetable-rice rotation. The nutrient accumulation and transfer between greenhouse eggplant-summer rice (GER) and greenhouse eggplant-summer fallow (GEF) without plastic cover in the Changxing city, Zhejiang province of China, were compared. The soil nutrient contents were determined in the surface soil samples collected from both the GER and GEF systems after eggplant harvest and after summer cultivation as well as the soils collected from both systems at different soil depths after summer cultivation. The nitrogen concentration of the surface water and groundwater samples collected during the flooding water time in GER was also measured. Both the GER and GEF soils showed obvious accumulation of nutrients at the 0–20-cm soil depth after eggplant harvest. However, compared with the summer fallow without plastic cover in GEF, rice planting in GER sharply reduced the nutrients in soils at the 0–20-cm layer. The NO3 −-N, Olsen-P, and available K in the soil of GER decreased from 25, 159, and 144 to 8, 127, and 120 mg kg−1, respectively. Nutrient contents in all different soil depths in GER were lower than those in GEF at equivalent soil depths. The nitrogen content of groundwater in GER showed unobvious enhancement during flooding water time. Rice planting during the summer after greenhouse vegetable cultivation could reduce the nutrient accumulation in soil. Flooding water in summer did not increase nutrient leaching in comparison with fallow without plastic cover during the summer. Thus, rice can be regarded as a suitable catch crop for greenhouse vegetable cultivation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call