Abstract

Riboflavin is a water-soluble vitamin involved in the metabolism of protein, fats and carbohydrates as a coenzyme. Pigs, mainly weaned piglets, are prone to riboflavin deficiency. Therefore, this study devoted to explore the effects of riboflavin on intestinal development and function of weaned piglets. A total of 21 piglets, weaned at day 21 of age, were randomly divided into three treatments. The experiment lasted 28 days. The three treatment groups were administered with 0 mg/kg (L_VB2), 3.5 mg/kg (M_VB2) and 17.5 (H_VB2) mg/kg riboflavin by addition into the dry matter basal diets of each group. During the 28-day trial, the feed conversion ratio of the M_VB2 group was lowest (p < 0.05). Duodenum villus height (VH) and the ratio of VH to crypt depth (VH:CD) in L_VB2 group was significantly lower compared with that in M_VB2 group and H_VB2 group (p < 0.05). In the L_VB2 group the number of Ki67 cells in the crypts of the duodenum was increased significantly (p < 0.05). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis using transcriptomic data showed that pathways related to apoptosis were significantly enriched in the L_VB2 group (p < 0.01). In addition, pathways related to inflammatory factors were significantly enriched in the H_VB2 group. The total antioxidant capacity (p < 0.05) and glutathione peroxidase (GSH-PX) activity (p < 0.05) of the L_VB2 group were lowest. In summary, riboflavin levels may regulate the intestinal morphology of piglet duodenum by affecting the renewal and differentiation of intestinal epithelial cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call