Abstract

Formulations of carbon-based inks for doctor blade applications were considered and the use of Carboxymethylcellulose (CMC) as rheology modifier and suspension stabilizer was proposed. Rheological measurement evidenced that CMC addition guarantees a good dispersion of the carbon powder which results in a higher stability of the ink. The electrical performances of Gas Diffusion Layer (GDL) coated with Micro-Porous Layers (MPLs) prepared with and without CMC were compared. A single PEMFC was used to assess the properties of these GDLs: electrochemical performances were tested in terms of I–V curves and of AC Electrochemical Impedance Spectroscopy (EIS) of the running cell. CMC-containing GDLs showed improved performances when the cell was operated at 80°C and RH 80–60. Analysis of the EIS spectra demonstrated that, at high Current Density (CD), the CMC-based GDLs suffer for water management. Such a behavior was ascribed to a hydrophilic character of the GDL due to residual amounts of CMC in MPL coating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.