Abstract

ABSTRACTAliphatic and aromatic hydrocarbons are environmental pollutants of serious concern. Their bioavailability is the major limiting factor that makes the bioremediation process slow. Therefore, the present study focuses on biodegradation of non-aqueous-phase liquids (NAPL) by a halophilic consortium (Pseudomonas aeruginosa and Escherichia fergusonii) in presence of rhamnolipid as well as a rhamnolipid-producing Pseudomonas aeruginosa AMB AS7. The study was performed in microcosms, and the residual hydrocarbons after degradation were estimated by gas chromatography. It was found that the degradation of hydrocarbons in NAPL was more in presence of rhamnolipid in comparison with their biotic controls. However, among NAPL, the degradation of phenanthrene (37.5%) and octadecane (47.8%) was found to be more by co-culture of halophilic consortium and rhamnolipid-producing P. aeruginosa AMB AS7. Denaturing gradient gel electrophoresis was performed to determine the viability of different bacterial strains (halophilic and rhamnolipid-producing bacterial strain). Besides, the results also revealed that during NAPL degradation, the cell surface hydrophobicity (CSH) of halophilic consortium increased from 9.12% to 69.55% when added with 100 mg/L of rhamnolipid, whereas CSH of rhamnolipid-producing P. aeruginosa AMB AS7 was constant at 31.9%, even though it produced about 271.8 mg/L of rhamnolipid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call