Abstract

Carbamazepine (CBZ), an anticonvulsant drug, is one of the most recalcitrant pharmaceuticals detected in wastewater. For the photocatalytic degradation of CBZ, visible light assisted heterogeneous Fenton-like hybrid composites were synthesized via a co-precipitation method by anchoring magnetite (Fe3O4) with reduced graphene oxide (rGO). The rGO loading not only reduced the aggregation of Fe3O4 nanoparticles, but also increased the adsorption capacity of the hybrid composites. The mass ratio of rGO in the composites substantially affected CBZ photocatalytic degradation and a 10 wt% rGO loading (rGF10) provided nearly complete CBZ degradation within 3 h. Moreover, the addition of rGO reduced the charge recombination of the bare Fe3O4 nanoparticles and provided more accessible reactive sites, enhancing the degradation capacity. The visible light excited Fe3O4 nanoparticles yielded reactive species such as hydroxyl radicals (·OH), holes (h+), and superoxide radicals (O2·−) during the photodegradation process that were evaluated by using specific scavengers during the degradation experiment. The hybrid catalyst was effective under wide pH ranges (from 3 to 9) and showed faster degradation rates in the acidic condition. The composites were magnetically separable, easily regenerated, and exhibited considerably high photocatalytic activity up to five cycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call