Abstract

In this paper two-dimensional (2-D) numerical investigation of flow past four square cylinders in an in-line square configuration are performed using the lattice Boltzmann method. The gap spacing g = s/d is set at 1, 3 and 6 and Reynolds number ranging from Re = 60 to 175. We observed four distinct wake patterns: (i) a steady wake pattern (Re = 60 and g = 1); (ii) a stable shielding wake pattern (80 ≤ Re ≤ 175 and g = 1); (iii) a wiggling shielding wake pattern (60 ≤ Re ≤ 175 and g = 3) and (iv) a vortex shedding wake pattern (60 ≤ Re ≤ 175 and g = 6). At g = 1, the Reynolds number is observed to have a strong effect on the wake patterns. It is also found that at g = 1, the secondary cylinder interaction frequency significantly contributes for drag and lift coefficients signal. It is found that the primary vortex shedding frequency dominates the flow and the role of secondary cylinder interaction frequency almost vanish at g = 6. It is observed that the jet between the gaps strongly influenced the wake interaction for different gap spacing and Reynolds number combination. To fully understand the wake transformations the details vorticity contour visualization, power spectra of lift coefficient signal and time signal analysis of drag and lift coefficients also presented in this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call