Abstract

The problem of pulsating flow through a circular pipe was analyzed numerically in the laminar flow region with the flow at the pipe inlet consisting of a fixed part and a pulsating component varying sinusoidally in time. The pipe wall was kept at an uniform temperature. The solution of two dimensional Navier-Stokes equations was obtained using Ansys Fluent software code and user defined function. The effect of Reynolds number, Strouhal number, and amplitude ratio is studied for 200 ≤ Re ≤ 2000, at 2 ≤ St ≤ 20 and 0.1 ≤ A/D ≤ 1. It is noticed that the large amplitude ratio combined with flow reversal occurring in a small zone near the wall promote augmentation of convective heat transfer. Small hike in Nusselt number is noticed with increase in Re and St; however, it changes substantially with hike in amplitude ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.