Abstract
A procedure has been developed to predict the effects of roughness and Reynolds number on the change in efficiency from a model or baseline to a prototype pump (“efficiency scaling”). The analysis of individual losses takes into account different roughnesses of impeller, diffuser/volute, impeller side disks, and casing walls in the impeller side rooms. The method also allows to predict the effect of roughness and Reynolds number on the hydraulic efficiency. The calculations are based on physical models but the weighting of impeller versus diffuser/volute roughness and the fraction of scalable losses within impeller and diffuser/volute are determined empirically from the analysis of tests with industrial pumps. The fraction of scalable impeller/diffuser/volute losses is found to decrease with growing specific speed. Roughness effects in the diffuser/volute are stronger than in the impeller, but the dominance of the stator over the rotor decreases with increasing specific speed. The procedure includes all flow regimes from laminar to turbulent and from hydraulically smooth to fully rough. It is validated by tests with viscosities between 0.2 to 3000 cSt and Reynolds numbers between 1500 and 108. The hydraulic losses depend on the patterns of roughness, near-wall turbulence, and the actual velocity distribution in the hydraulic passages. These effects—which are as yet not amenable to analysis—limit the accuracy of any efficiency prediction procedure for decelerated flows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.