Abstract

AbstractThe retained austenite (RA) characteristics of Al‐containing TRIP700 steels have been manipulated using varying bainitic isothermal transformation (BIT) processing. The microstructural evolution was investigated using optical microscopy and quantitative image analysis, while the amount of transformed RA was evaluated with the saturation magnetization (SM) technique. Cyclic behavior is found to depend on the applied strain amplitude and stability of RA. At strain amplitudes with comparable elastic and plastic strain components, cyclic softening prevails, facilitated by more stable RA microstructures and Low Cycle Fatigue (LCF) performance benefits from a lower RA stability, which controls the amount of cyclic softening rate. With increasing plastic strain component, a transition to cyclic hardening is observed, and the transition strain increases with increasing RA stability. LCF performance deteriorates because of excessive cyclic strain hardening promoting martensitic transformation. The effect is accompanied by a transition from mixed dimple/cleavage to cleavage‐type fracture characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call