Abstract

A study is made of the effect of the transport of Xe 147-nm resonant radiation on the parameters of a low-temperature plasma of DC and RF discharges in gas mixtures used as the working medium in lasers based on infrared transitions in xenon. RF discharges are treated in the planar geometry typical of slab lasers. DC discharges in tubes are treated in cylindrical geometry. The trapping of resonant radiation is described using different approximate models: the decay time approximation for a plasma slab (the Holstein approximation) and the effective lifetime approximation (the Biberman approximation). The transport equation for resonant radiation is solved numerically. The effect of the radiation transport on both the current-voltage characteristics of a discharge and the spatial distribution of the excited Xe atoms is investigated. The current-voltage characteristics calculated for a DC discharge with allowance for the resonant radiation transport agree well with the experimental characteristics. It is found that, for an RF discharge, the effective lifetime approximation overestimates the density of the excited Xe atoms near the electrodes by several times and underestimates this density at the midplane of the discharge gap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.