Abstract
AbstractThe dynamic heat capacity and glass‐transition temperature of polystyrene (PS)/poly(vinyl acetate‐co‐butyl acrylate) (VAc–BA) (50:50 w/w) structured latex films as a function of annealing time at 70, 77, and 85 °C were examined with modulated‐temperature differential scanning calorimetry. The PS and poly(vinyl acetate‐co‐n‐butyl acrylate) components were considered to be the cores and shells, respectively, in the structured latex. The dynamic heat capacity decreased with time. The glass‐transition temperatures of the PS and VAc–BA phases shifted to higher values after annealing. The results of thermogravimetry showed that there existed about 1.8% residual water in the films. The mean free volume and relative concentration of holes at room temperature (before and after annealing) and 85 °C, as a function of time, were obtained with positron annihilation lifetime spectroscopy (PALS). The PALS results indicated no significant change in free volume during annealing. It is believed that the loss, by diffusion, of residual water mainly caused a decrease in heat capacity and an increase in the glass‐transition temperatures. As little as 1.8% residual water in the structured latex films had a significant influence on the thermal properties. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1659–1664, 2001
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science Part B: Polymer Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.