Abstract

In this study, the effects of residual stress induced by three different cooling methods during heat treatment on the crack propagation behaviour of the GH4169 disc were investigated. Different levels of stress fields were induced to the specially designed discs by using air cooling (AC), air jetting cooling (AJC) and water quenching (WQ) methods and were quantitated by numerical simulation. These discs were then subjected to prefabricated cracking, and crack propagation tests were conducted on a spin tester with two load spectrums. Crack growth behaviour was depicted via the surface replica technique and fracture morphology. Regarding the linear superposition of residual stress and centrifugal force, the crack propagation behaviour of different discs was simulated using the FRANC3D software. AJC and WQ introduced compressive residual stress (−259 MPa and −109 MPa, respectively) into the disc compared with the AC method (about −1.5 MPa). The AJC method increases the crack propagation life of the disc by introducing residual compressive stress into the area near the surface of the central hole to inhibit the opening of the crack surface. When the fatigue load was low, this inhibition effect was more significant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.