Abstract

Friction stir welding (FSW) has been adopted in the aerospace industry for fabricating structural alloys due to the low melting point and high thermal conductivity of aviation aluminum alloys. However, welding residual stresses can lead to secondary deformation in friction stir welded (FSWed) structures. Additionally, microstructural characteristics impact the crack growth rates and directions in these structures. Therefore, it is necessary to investigate the effects of residual stress and microstructure on the fatigue responses of FSWed joints. In this paper, we studied the fatigue crack growth behavior of two homogeneous and dissimilar FSWed joints with varying welding parameters, namely 2024-T3 and 7075-T6. The residual stresses were measured with the X-ray diffraction method. The dislocations and precipitates in different zones of the FSWed joints were analyzed via transmission electron microscopy (TEM). The results demonstrated that the residual stress significantly affected the fatigue crack growth rate and direction; the tensile residual stress promoted fatigue crack growth and offset the decrease in the fatigue crack growth rate that occurred due to grain refinement. The results of the microstructural analysis indicated that dislocation density and sliding resistance increased with the decrease in rotational speed and led to a decreased rate of fatigue crack propagation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call