Abstract

Directional solidification of mercury cadmium telluride (MCT) requires that the temperature gradient to growth rate ratio be high to avoid constitutional supercooling. With the optimum gradient condition for solidifying MCT in NASA's advanced automated directional solidification furnace (AADSF), it is necessary to use translation rates as low as 0.2 μm/s. The result is that any fluid flow with a velocity comparable to or higher than this will dominate the solidification characteristics, particularly the compositional distribution in an alloy such as this which has a large solidus-liquidus separation. In an effort to reduce fluid flow velocities a space experiment was performed. On the second United States Microgravity Payload Mission (USMP-2), the AADSF made its maiden flight and successfully completed growth of a MCT boule 16 cm long. The furnace was located approximately 3 m away from the center of gravity of the space shuttle, and this combined with the drag component of residual acceleration present during flight, resulted in quasisteady residual accelerations of the order of 1 μg 0 where g 0 is the earth's natural gravity. Of more importance is that different orbiter attitudes during the mission produced significant differences in the resultant residual acceleration vector, in both magnitude and direction and that these differences caused large compositional variations both across the radii of the boule and along the surfaces of the boule. Comparison will be made with examples grown on the ground and in magnetic fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.