Abstract

A previously developed Smoluchowski theory for concentrated hard-sphere suspensions in shear flow is extended to study structure and rheology of colloidal suspensions with soft repulsive interactions. Accelerated Stokesian Dynamics simulations are carried out to provide insight and to enable direct comparison with theoretical predictions. The effect of extended range repulsive interactions is studied by considering repulsive interactions with different steepness, using identical potentials in simulation and theory, for varying shear rates characterized in dimensionless form as 0.1 ≤ Pe ≤ 100; here, Pe = 6πηa3/kbT is the ratio of hydrodynamic to Brownian forces and η is the fluid viscosity, is the shear rate, a is the particle radius and kbT is the thermal energy. Examples of predicted microstructures and the equivalent simulated results for hard-sphere suspensions at ϕ = 0.40 are also presented for comparison. The predicted pair distribution function is in good agreement with simulations before the onset of a shear-induced ordering transition in simulations of the soft colloids. The calculations of shear viscosity based on the predicted microstructure were also in general agreement with simulation results. The role of hydrodynamic interactions on flow-induced structures is discussed in the context of the proposed theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.