Abstract

The objective was to determine the effects of reproductive tract score (RTS) on reproductive performance in beef heifers bred by timed artificial insemination followed by natural service (AI-NS) or by natural service only (NSO). Angus cross beef heifers (n = 2660) in the AI-NS group were artificially inseminated at a fixed time (5- or 7-day CO-Synch + controlled internal drug release protocol) once, then exposed to bulls 2 weeks later (bull-to-heifer ratio = 1:40–1:50) for the reminder of the 85-day breeding season. Angus cross beef heifers (n = 1381) in NSO group were submitted to bulls (bull-to-heifer ratio = 1:20–1:25) for the entire 85-day breeding season. Heifers were reproductive tract scored from 1 (prepubertal) to 5 (cyclic) 4 weeks before, and were body condition scored (BCS) from 1 (emaciated) to 9 (obese) at the beginning of breeding season. Pregnancy diagnosis was performed 70 days after AI for AI-NS group and 2 months after the end of breeding season for both groups. Heifers in both groups were well managed and of similar age (14.9 ± 0.4 [AI-NS] and 14.7 ± 0.8 [NSO] months). Pregnancy rates (PRs) and number of days to become pregnant were calculated using PROC GLIMMIX and PROC LIFETEST procedures of SAS. Adjusting for BCS (P = 0.07), expressed estrus (P < 0.05), year (P < 0.05), and BCS by year interaction (P < 0.05), the AI-PR was greater for heifers in AI-NS group with higher RTS (P < 0.0001; 40.7%, 48.3%, 57.6%, and 64.6% for RTS of 2 or less, 3, 4, and 5, respectively). Controlling for BCS (P < 0.05), year (P < 0.05) and the breeding season pregnancy rates (BS-PRs) were greater for heifers in the AI-NS group with higher RTS (P < 0.01; 81.2%, 86.5%, 90.4%, and 95.2% for RTS of 2 or less, 3, 4, and 5, respectively). Similarly, adjusting for BCS, year (P < 0.05), the BS-PR was greater for heifers in NSO group with higher RTS (P < 0.01; 79.7%, 84.3%, 88.4%, and 90.2% for RTS of 2 or less, 3, 4, and 5, respectively). Heifers with higher RTS in both groups became pregnant earlier in the breeding season compared with heifers with lower RTS (log-rank statistics: P < 0.0001). Heifers in the AI-NS group become pregnant at a faster rate compared with those in the NSO group (P < 0.01). The BS-PR for heifers with RTS 5 was different between AI-NS and NSO groups (P < 0.0001). In conclusion, the RTS influenced both the number of beef heifers that became pregnant during the breeding season and the time at which they become pregnant. Furthermore, irrespective of RTS, heifers bred by NSO required more time to become pregnant than their counterparts in herds that used timed AI. The application of RTS system is reliant on the use of synchronization protocol. The application of RTS for selection may plausibly remove precocious females with lower RTS. On the contrary, application of RTS would help select heifers that will become pregnant earlier in breeding season.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call