Abstract

Renal nerves are thought to play an important role in cardiovascular regulation under both normotensive and hypertensive conditions. In the present study the effect of renal denervation on the changes in plasma renin activity (PRA) after aortic baroreceptor deafferentation (tADN) were investigated in the rat. Bilateral renal denervation did not alter arterial pressure (AP, 100 +/- 4 mmHg; 1 mmHg = 133.32 Pa), heart rate (HR, 363 +/- 12 bpm), or PRA (2.9 +/- 0.6 ng.mL-1.h-1) compared with the respective sham renal denervation values of 106 +/- 3 mmHg (AP), 385 +/- 13 bpm (HR), and 3.3 +/- 0.7 ng.mL-1.h-1 (PRA). On the other hand, bilateral tADN resulted in significant increases in AP, HR, and PRA. One and 3 days after tADN, AP was 130 +/- 4 and 127 +/- 6 mmHg, HR was 461 +/- 15 and 463 +/- 20 bpm, and PRA was 9.1 +/- 3.0 and 11.9 +/- 4.5 ng.mL-1.h-1, respectively. Renal denervation before tADN prevented the increases in AP and PRA, but it did not affect the increase in HR. These data indicate that renal denervation does not alter basal PRA in normotensive animals but prevents the increased renin release observed in neurogenic hypertension. These data suggest that the increased PRA may be one of several factors that contributes to the elevated AP after tADN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call