Abstract

The microstructure of compacted expansive soils differs depending on the remoulding water content and compaction dry density. In particular, along the standard Proctor compaction curve, the expansive soil compacted at water content less than the optimum water content has relatively larger macropores in comparison to the expansive soil compacted at water contents greater than the optimum water content. These changes in microstructure not only influence the hydraulic conductivity but also the infiltration rates during the swelling process of compacted expansive soils. Therefore, this paper brings out the effect of remoulding water content on the infiltration rates during swelling process and hydraulic conductivity at the end of swelling process of a compacted expansive soil. The oedometric-infiltrometer test arrangement was used to determine the hydraulic response, in terms of infiltration rates and hydraulic conductivity, upon inundation of the compacted expansive soil specimens remoulded with water contents corresponding to dry and wet side of optimum water contents at the same standard Proctor compaction dry density. As expected at the end of swelling process, the swell magnitude and hydraulic conductivity were relatively higher for the clay specimen compacted at dry of optimum water content. In addition, the infiltration test results showed that the time needed for the outflow (i.e. permeation flow) to occur and attain a steady state condition was comparatively less for the compacted clay specimen compacted at dry of optimum water content than at wet side of optimum water content. The changes in dry density and water content during the swelling process of compacted clay specimens were also traced.KeywordsHydraulic conductivityInfiltrationInfiltration rateSwellVoid ratio

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call