Abstract
The influence of relaxation and retardation time on peristaltic transport of an incompressible Oldroydian viscoelastic fluid by means of an infinite train of sinusoidal waves traveling along the walls of a two-dimensional flexible channel is investigated. A perturbation solution is obtained for the case in which the amplitude ratio (wave amplitude to channel half-width) is small. The results show that the values of the mean axial velocity of an Oldroydian viscoelastic fluid is smaller than that for a Newtonian fluid. The reflux phenomena are discussed. It is found that the critical reflux pressure gradient decreases with increasing retardation time and increases with increasing relaxation time. Numerical results are reported for different values of the physical parameters of interest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Applied Mechanics and Technical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.