Abstract

Plasmonic subtractive color filters through patterning periodic nanostructures on ultrathin Ag films deposited on a glass substrate, exhibiting good durability, simple fabrication, and flexible color tunability, have attracted considerable attention due to their tremendous potential applications. While previous studies have mainly focused on their extraordinary physical mechanisms, color purity, which is another key parameter for high quality imaging applications, has been much less investigated. In this work, we demonstrate that the relative position of nanoholes patterned on ultrathin Ag films can largely affect the color purity of plasmonic subtractive color filters. The calculated results agree reasonably well with the experimental data, revealing that the purity of subtractive colors can be improved by changing the nanohole arrays from square lattice to triangular lattice without reducing transmission at visible frequencies. In addition, underlying mechanisms are clarified by systematically analyzing the dominant valley in transmission spectra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call