Abstract

This work aims at examining the effect of an applied hydrous strain on the cation exchange process of a dioctahedral smectite by quantitative XRD analysis. The hydrous constraint is created by a continuous, in situ, hydration–dehydration cycles using variation of %RH (relative humidity) rate. In order to examine the effect of the retained materials stress on the cation exchange capacity of the host materials, the starting, the intermediate and the final stressed samples are deposed in contact with saturated Cd(II), Co(II), Zn(II) and Ni(II) chloride solutions. To characterize structural changes, an XRD profile modeling approach is used. This investigation allowed us to determine parameters related to the nature, abundance, size, position, organization of exchangeable cation and water molecule in the interlamellar space, along the c* axis. Qualitatively, the hydration behavior is affected by the number of hydration–dehydration cycle, and an interstratified hydration phases due probably to a new organization of the interlamellar space content is observed. Quantitatively, the theoretical mixed layer structure (MLS) suggests the coexistence of more one “crystallite” specie which are saturated by more than one exchangeable cations indicating a partial saturation of all exchangeable sites. Using optimum structural parameter values, deduced from the theoritecals models, some equations which described the evolution of exchangeable cation amount versus the applied hydrous strain were derived.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call