Abstract
Beta-tricalcium phosphate-reinforced high-density polyethylene (beta-TCP/HDPE) is a new biomaterial, which was made to simulate bone composition and study its capacity to act like bony tissues. This material was produced by replacing mineral component and collagen soft tissue of bone with beta-TCP and HDPE, respectively. The biocompatibility of composite samples with different volume fractions of TCP (20, 30, and 40 vol %) and two different particle sizes (80-100 and 120-140 mesh size) was examined in vitro using the osteoblast cell line G-292 by proliferation, alkaline phosphatase (ALP) production, and cell adhesion assays. Cell-material interaction on the surface of the composites was observed by scanning electron microscopy (SEM). The effect of beta-TCP particle size on behavior of the osteoblast cell line was compared between two groups of the composite samples containing smaller and larger reinforcement particle sizes as well as with those of a negative control. In general, results showed that the composite samples containing larger particles supported a higher rate of proliferation and ALP production by osteoblast cells after 3, 7, and 14 days of incubation compared to the composite samples with smaller particle size and control. Furthermore, more cells were attached to the surface of composite samples containing larger particle size when compared to the smaller particle size composites (p<0.05). This number was nearly equal with numbers adhered on negative control [tissue culture polystyrene (TPS)] and significantly higher in comparison with composite control [polyethylene (PE)] (p<0.05). Adhered cells presented a normal morphology by SEM and many of the cells were seen to be undergoing cell division. These findings indicate that beta-TCP/HDPE composites are biocompatible, nontoxic, and in some cases, act to stimulate proliferation of the cells, ALP production, and cell adhesion when compared to the control counterparts. Furthermore, beta-TCP/HDPE samples with larger reinforcement particle size were shown to possess better biological properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.