Abstract

In the present experimental investigation, Al (12 wt% Si) as matrix material and up to 15 wt% of flyash particulate composite was fabricated using the liquid metallurgy route. The wear and friction characteristics of the composite in the as-cast conditions were studied by conducting sliding wear test, slurry erosive wear test and fog corrosion test. The sliding wear behavior of the MMCs were investigated by varying parameters like normal load, percentage flyash, and track velocity. Pin-on-disc wear testing machine was used for investigating sliding wear behavior. In slurry erosive wear studies, percentage flyash and pH value of the slurry were used as variables. Corrosion studies were carried out using fog corrosion test. The specimens were exposed to a fog of NaCl. The worn surfaces were analyzed using optical microscope and scanning electron microscope. The results indicate that the wear resistance of the flyash reinforced material increased with increase in flyash content, but decreases with increase in normal load, and track velocity. The microscopic examination of the worn surfaces, wear debris and subsurface shows that the base alloy wears primarily because of micro cutting. But the MMCs wear because of delamination, micro cutting, oxidation and thermal softening. Corrosion has increased with increase in flyash content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call