Abstract

A fine-grain high-density tough matrix is a general prerequisite for synthesis of high-strength and crack-resistant composite materials, as well as its self-reinforcement with extended grains of β-Si3N4 and reinforcement with β-SiC crystals. Both approaches are used simultaneously in the present work. It is shown that the reinforcement of a silicon nitride matrix based on ultradisperse powder compositions by SiC whiskers of grade TWS provides hot-pressed ceramics with a high ultimate bending strength (950 MPa) and crack resistance (10 MPa · m1/2). Reinforcement by fine or coarse whiskers increases the crack resistance by 30% with respect to monolithic Si3N4. Composites reinforced by TWS silicon carbide whiskers preserve their high strength up to 1500°C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.