Abstract

Buckling loads of laminated panels calculated by analytical approaches are usually based on the assumptions that the panels are subjected to uniform in-plane edge loads without cutouts, despite of the fact that real structural components are subjected to various kinds of non-uniform in-plane edge loads along with different sized cutouts. The main objective of this paper is to study the effects of reinforced/unreinforced circular cutouts and non-uniform in-plane edge loads on the buckling behavior of composite panels with different ply-orientations by the finite element technique. Furthermore, it addresses the effects of different boundary conditions and thickness of panels. To carry out the analyses, a nine-noded heterosis plate element and a compatible three-noded beam element are developed, including the effect of shear deformation and rotary inertia for both the plate and the stiffeners. In structural modeling, the plate and the stiffener elements are treated separately, with their displacement compatibility maintained using transformation matrices. It has been illustrated in this study that presence of larger-sized reinforced cutouts predominantly increases the buckling strength of the panel as compared to those with smaller sized cutouts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call