Abstract

It is a well-known fact that automotive industries in every country are shifting towards electric vehicles (EVs) and in the days to come it is expected that the industry will become dominated by them, along with hybrid electric vehicles (HEVs). Unfortunately, the acceptance of EVs for mobility is affected by its poor range per charge. Thus, energy optimization and waste energy recuperation are currently in need. A promising method to recover energy that is lost during vehicle deceleration is regenerative braking, which extends the range of a vehicle by recovering the kinetic energy from braking and using it to recharge the battery. However, the intensity of the charging–discharging rate and the operating temperature of lithium–ion (Li–ion) batteries make them vulnerable to failure, making the rate of current delivered to the battery by regenerative braking a serious concern. Therefore, the focus of this review article is on how regenerative braking affects battery life and the precautions being taken to safeguard the battery against increased charge during regenerative braking. In this review paper, various research articles are referred to in order to examine how regenerative braking affects battery life. It is concluded that charging current obtained from long-term regenerative braking is the prominent factor in battery deterioration, regardless of the current intensity. Additionally, the rate of lithium plating is increased if the temperature and state of charge (SOC) are outside of the ideal range. By lowering the depth of discharge (DOD) and using shorter recharging times, higher levels of regenerative braking will extend a battery’s lifecycle even at high SOC and temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call