Abstract

A water model has been applied to investigate initial bubble behavior using specially-coated samples of porous MgO refractory to simulate the high-contact angle of steel-argon refractory systems with different permeabilities. Air is injected through the porous refractory and travels through many inter-connected pores to exit the surface through “active sites”. An active site is a pore where bubbles exit from the surface of the porous refractory. The effect of refractory properties has been investigated in both stagnant and downward-flowing water. The number of active sites increases with increasing gas injection flow rate, permeability, and velocity of the downward-flowing water, and lower contact angle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.