Abstract
The effect of the volume fraction of I-phase on the hot compressive behavior and processing maps of the extruded Mg-Zn-Y alloys was examined, and the obtained results were compared with those of the cast alloys in a previous work. The average grain sizes, fractions of dynamically recrystallized (DRXed) grains, and sizes of DRXed grains of the extruded alloys after compressive deformation were significantly smaller, higher and smaller, respectively, than those of the cast alloys after compressive deformation under the same experimental conditions. This was because the microstructures of the extruded alloys, having much more grain boundaries and more refined I-phase particles than the cast alloys, provided a larger number of nucleation sites for dynamic recrystallization than those of the cast alloys. The constitutive equations for high-temperature deformation of the extruded and cast alloys could be derived using the same activation energy for plastic flow, which was close to the activation energy for lattice diffusion in magnesium. Compared with the cast alloys, the onset of the power law breakdown (PLB) occurred at larger Zener-Holloman (Z) parameter values in the extruded alloys. This was because the extruded alloys had finer initial grain sizes and higher fractions of finer DRXed grains compared to the cast alloys, such that the onset of PLB caused by creation of excessive concentrations of deformation-induced vacancies was delayed to a higher strain rate and a lower temperature. The flow-stress difference between the extruded alloys and the cast alloys could be attributed to the difference in the fraction of DRXed grains. According to the processing maps, the extruded alloys exhibited higher power dissipation efficiency and flow stability than the cast alloys. This agreed with the microstructural observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.