Abstract

The solidification microstructure and crystal orientation have been investigated for solar cell grade high purity polycrystalline silicon through a unidirectional solidification technique. In the solidification velocity range of 1.25-2.5times10-6 m/s, the grain size enlarges as solidification progresses. Furthermore, large columnar grains contain many twin boundaries. However, in above the critical velocity around 40times10-6 m/s, equiaxed structure appears. A model of two-dimensional nucleation on the reentrant corner was established, and the critical nucleus could be estimated to be 70 % to 80 % of the radius of the general two-dimensional nucleus. The reduction of the critical radius and undercooling on the reentrant corner could influence on the priority growth direction and the enlargement of the grain size

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.