Abstract

Background and purpose Previous data indicate that the EGFR pathway is involved in the response of tumor cell lines to irradiation. To determine if this receptor plays a role in the response of the intestinal mucosa, the effect of a spontaneous mutation in EGFR (B6C3-a-wa-2) on radiosensitivity and proliferative capacity was investigated using in vivo clonogenic assays and immunohistochemistry. Patients and methods EGFR mutant mice were compared with wild-type mice using the in vivo jejunal microcolony assay using single and split doses to measure the radiosensitivity and repopulation of clonogenic jejunal mucosal cells. In addition, paraffin-embedded tissue sections were assessed for proliferation (PCNA), DNA repair (Ku70 and γH2AX), and apoptosis (TUNEL) by immunofluorescent staining (wild-type vs. heterozygous only) at various times after 5 Gy single dose. Results After the high doses used in the split-dose experiments, EGFR heterozygous and homozygous mutant mice were significantly more radiosensitive than their wild-type littermates. There was no clear difference in split-dose repair based on EGFR function. After 5 Gy single dose there were significantly more apoptotic cells within the crypts of heterozygous mice than of wild-type mice, beginning at 3 h post irradiation. Decreased proliferation was observed only in the homozygous mutant mice. PCNA staining was lower in the heterozygous mice than in wild-type mice at 1 and 3 h post-5 Gy. Conclusion The results indicate that after high doses the radiosensitivity of EGFR mutant mice is significantly higher than that of wild-type, and that this could be the result of an increase in apoptosis rather than reduced DNA repair. Proliferative capacity was modestly reduced, but only in the homozygous mutants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.