Abstract
In the reactor coolant pump experiments, there are cases where different impellers are replaced on the same volute for experiments, but due to the different diameter of the impeller inlet, there will be a sudden expansion between the inlet pipeline and the impeller inlet, resulting in a decrease in the efficiency of the pump. In order to solve this problem, a scheme of using an inlet pipe with a reduced diameter structure and changing the position of the impeller was proposed, and based on the three-dimensional incompressible Reynolds N-S equation, the reactor coolant pump device was numerically simulated by CFD software. The data simulation results of the reduced diameter structure, straight pipe flow field and changing the position of the impeller were compared with the model experiments, and the reliability of the calculation results was verified. The results show that the inlet pipe with reduced diameter structure and the method of changing the position of the impeller can effectively solve the problem of efficiency decline caused by the sudden expansion of the flow channel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.