Abstract

Redox potential was used to develop a stationary-phase fermentation of Candida tropicalis that resulted in non-growth conditions with a limited decline in cell viability, a xylitol yield of 0.87 g g−1 (95% of the theoretical value), and a high maximum specific production rate (0.67 g g−1 h−1). A redox potential of 100 mV was found to be optimum for xylitol production over the range 0–150 mV. A shift from ethanol to xylitol production occurred when the redox potential was reduced from 50 mV to 100 mV as cumulative ethanol (Y ethanol) decreased from 0.34 g g−1 to 0.025 g g−1 and Y xylitol increased from 0.15 g g−1 to 0.87 g g−1 (α=0.05). Reducing the redox potential to 150 mV did not improve the fermentation. Instead, the xylitol yield and productivity decreased to 0.63 g g−1 and 0.58 g g−1 h−1 respectively and cell viability declined. The viable, stationary-phase fermentation could be used to develop a continuous fermentation process, significantly increasing volumetric productivity and reducing downstream separation costs, potentially by the use of a membrane cell-recycle reactor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.