Abstract
Our primary hypothesis was that red-to-near infrared (R-NIR) irradiation would have an effect on the kinetics parameters of the reaction of cytochrome c with isolated cytochrome c oxidase (CCO), and that the magnitude and direction of these changes could be interpreted in the context of the reaction schemes proposed by other authors. New values for the milimolar extinction coefficients of cytochrome c were also determined. Definitive answers to the fundamental processes involved in red-to-near infrared photobiomodulation (R-NIR-PBM) have not been obtained. The consensus is that the electron transport chain enzyme CCO is the target for R-NIR-PBM. This work was undertaken to explore the effect of R-NIR on the activity of isolated CCO. Scans for cytochrome c were obtained in both reduced and oxidized states, and values for the extinction coefficients were calculated. Activity assays were performed by following the oxidation state of cytochrome c at 550 or 415 nm. R-NIR effects on CCO activity were evaluated by pre-irradiating the enzyme at 670 or 830 nm, or by irradiating the reaction mixture with 660 nm light. Milimolar extinction coefficients (L-1 cm-1) were: ɛ550red = 29.1 ± 0.4, ɛ550ox = 8.60 ± 0.15, ɛ415red = 140 ± 2, and ɛ415ox = 89.0 ± 1.1. Reduced-oxidized extinction coefficients were: δɛ550red-ox = 20.5 ± 0.2, and δɛ415red-ox = 51.0 ± 2.0. The second order rate constants k' for irradiated CCO did not show a statistically significant difference from controls. The oxidation of cytochrome c by isolated CCO has not been shown to be affected by R-NIR irradiation, whether applied prior to or concurrently with the enzymatic assays. This lack of effect by R-NIR calls into question the CCO activity model of R-NIR photobiomodulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.