Abstract

Transport mechanism studies in TiO<SUB>2</SUB>/In(OH)<SUB>x</SUB>S<SUB>y</SUB>/Pb(OH)<SUB>x</SUB>S<SUB>y</SUB>/PEDOT:PSS eta solar cell have been carried out. The characterizations have been performed both in the dark and under varying illumination intensity for temperature range 200 K – 320 K. Calculations from ideality factor have shown that the recombination process of the eta solar cell in the dark to be tunneling enhanced, while under illumination it is thermally activated and takes place through exponentially distributed energy recombination levels. The temperature has been found to influence series resistance of the solar cell. Series resistance has been found to be high at low temperature and low at higher temperature, thus we can conclude that the recombination is thermally activated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.