Abstract

AbstractBisphenol‐A glycidyl ether epoxy resin was modified using reactive poly(ethylene glycol) (PEO). Dynamic mechanical analysis showed that introducing PEO chains into the structure of the epoxy resin increased the mobility of the molecular segments of the epoxy network. Impact strength was improved with the addition of PEO at both room (RT) and cryogenic (CT, 77 K) temperature. The curing kinetics of the modified epoxy resin with polyoxypropylene diamines was examined by differential scanning calorimetry (DSC). Curing kinetic parameters were determined from nonisothermal DSC curves. Kinetic analysis suggested that the two‐parameter autocatalytic model suitably describes the kinetics of the curing reaction. Increasing the reactive PEO content decreased the heat flow of curing with little effect on activation energy (Ea), pre‐exponential factor (A), or reaction order (m and n). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.