Abstract

Electrochemical performance of the material depends on the morphology and structural characteristics of the material. Co3O4 samples shows the remarkable electrochemical performance owing to the high porosity, appropriate pore size distribution and novel architecture and reaction time effect of morphology. In this work, Co3O4 nanowires grown on Ni foam have been synthesized through a facile hydrothermal approach, revealing large capacitance of 2178.4 mF cm-2 at the current density of 2 mA cm-2 and cycling stability with 79.6% capacitance retention after 6000 cycles. The as-assembled device delivers excellent electrochemical performance for high specific capacitance of 356 mF cm-2 at the current density of 2 mA cm-2 and high cycle stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call