Abstract

Abstract The effect of substitutional alloying of Re on elastic properties of B2 NiAl has been studied using first-principles electronic-structure calculations by the exact muffin-tin orbitals method and the coherent potential approximation. Our calculations have shown that elastic constants C 12 , C 44 and bulk modulus B of (Ni 1− x Re x )Al alloys increase with Re composition almost linearly, but concentration dependence of elastic constants C 11 , Young modulus E , shear modulus G , G / B ratio and the Cauchy pressure P C is strongly nonmonotonously and has peculiarities near the concentration x = 30 at.% Re. Analyzing the density of states and Fermi surface sections we have a direct connection between the behavior of the elastic constants of (Ni 1− x Re x )Al alloys and changes in the interatomic bonding and Fermi surface topology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.