Abstract

The most common additive manufacturing technique fused filament fabrication (FFF) suffers from inter-bead porosity that reduces mechanical properties. Inter-bead pores follow the raster angle, which causes anisotropic mechanical properties. Yet, the effects of raster angle on the mechanical behavior of short-carbon-fiber-reinforced (SCFR) thermoplastics are unclear. In this study, we performed tensile, flexural, and fracture toughness tests on SCFR acrylonitrile butadiene styrene (ABS). Raster angles of 0°, 15°, 30°, 45°, 60°, 75°, and 90° were investigated. Tensile strength and elastic modulus decreased by 22–35% for a change from 0° to 15°. Flexural strength and modulus were less sensitive to raster angle. Flexural strengths were at least 50% more than tensile strength for the same raster angle. Whereas flexural modulus is at least 15% less than elastic modulus. Fracture toughness showed a non-linear relationship with the raster angle. Maximum fracture toughness was observed at 0° and 60° rasters. Crack deflection was observed as the toughening mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.