Abstract

The influences of the sintering additive content of rare-earth oxide (Y2O3, Gd2O3, Sm2O3) on microstructure and mechanical properties of ceria ceramics were investigated by scanning electron microscopy and small specimen technique. A small punch testing method was employed to determine the elastic modulus and biaxial fracture stress of the ceria-based ceramics, and the fracture toughness was estimated by Vickers indentation method. Grain growth in the rare-earth oxides doped ceria ceramics was significantly suppressed, compared to the pure ceria ceramics. However, the elastic modulus, fracture stress and fracture toughness were decreased significantly with increasing additive content of the rare-earth oxides, possibly due to the oxygen vacancies induced by the rare earth oxides doping. The experimental results suggest that the change in the mechanical properties should be taken into account in the use of ceria-based ceramics for solid oxide fuel cells, in addition to the improvement of oxygen ion conductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.