Abstract

The effect of rare earths (RE) ranging from 0.1% to 1.2% (mass fraction) on hot cracking resistant property of Mg-Al alloys was investigated. The results show that hot cracking resistant property of Mg-Al alloys remarkably declines with an increase of RE addition. The causes of the decline are as follows: First, grain coarsening of Mg-Al alloys caused by RE addition reduces the fracture strain required for hot crack initiation. Second, RE reduces the eutectic microstructure of Mg-Al alloys, and as a result, shortens the time that the feeding channel remains open, making it difficult to feed the alloy. Furthermore, RE elevates the eutectic reaction temperature, which leads to the decrease in the strength of the interdendritic liquid film at the late stage of solidification. Third, when α-Mg dendrites form continuous skeletons, the interdendritic Al 11 RE 3 phase tends to block the feeding channels and increases the difficulty of feeding. Last, the shrinkage ratio discrepancy between Al 11 RE 3 phases and α-Mg matrix is prone to cause shrinkage stress and promote hot crack initiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.