Abstract

AbstractThe effect of rare earth elements Ce and La on the evolution behavior of inclusions in HRB400E steel was studied through experimental observations and thermodynamic calculations. Neutral salt spray corrosion experiments were also conducted to investigate the effect of Ce–La on the corrosion resistance of steel. The results showed that the typical inclusions in steel without rare earth were MnS and MnO–SiO2. A small amount of Mn–Si–O–S inclusions was also observed. After adding rare earth, the typical inclusions were transformed into isolated (Ce,La)2O2S, (Ce,La)2O3 + MnS, and (Ce,La)2O2S + MnS complex inclusions. The thermodynamic calculations indicated that the rare earth elements in molten steel preferentially reacted with MnO–SiO2 inclusions and dissolved oxygen and sulfur to form (Ce,La)2O3 and (Ce,La)2O2S. Small amounts of [S] and [Mn] adhered to the surface of the nucleated rare earth inclusions to form complex inclusions. After Ce–La treatment, the corrosion rate of the steel decreased from 3.491 to 1.992 mm year−1, and the corrosion resistance was improved. The change in corrosion behavior is due to the modification of the inclusions into rare earth inclusions with good compatibility with the steel matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.