Abstract

Rare-earth atoms play an important role in determining the magnetocrystalline anisotropy in 4f-3d intermetallic compounds. Recently we reported on the synthesis and magnetic properties of Gd-substituted Mn-Zn ferrite nanoparticles as potentially suitable for magnetic fluid hyperthermia (MFH). In MFH the specific power absorption rate is related to the lossy magnetocrystalline anisotropic properties of the magnetic fluids. In this paper we report the role of Ho substitution in magnetite nanoparticles, which is found to enhance the KV product arising from the large anisotropy of Ho3+ moments. The zero-field-cooled magnetization data is then simulated by assuming noninteracting magnetic particles with uniaxial anisotropy and lognormal particle size distribution. The fit parameters give the values of particle diameter (D) 9 nm, standard deviation 0.3 in ln(D), and the anisotropy constant K to be 3.5×104J∕m3. The value of K thus obtained is an order of magnitude larger than the value known for the undoped for magnetite (104J∕m3).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.