Abstract

Abstract Magnesium based Mg–9Al–1Zn–5RE (RE=Y, La, Nd, Ce, or Pr) alloys with or without an addition of 1%Si were rapidly solidified by chill block melt spinning and splat quenching. The base alloy AZ91 (Mg–9Al–1Zn) was also rapidly solidified. Isochronal heat treatment for 1 h at 100–400°C showed that the microhardness of the ribbon maintained a similar level to that of the as spun alloy up to 300°C but decreased when heat treated at 400°C. Isothermal heat treatment for up to 24 h at 250–350°C showed that there were aging responses for the sample treated at 250°C while above this temperature, the microhardness decreased as the treatment time increased. The addition of 5% of RE elements to AZ91 displaced the Mg17Al12 phase in AZ91 with fine dispersoids of Al2RE (RE=Y or Nd) or Al11RE3 (RE=La, Nd, Ce, or Pr) in Mg–9Al–1Zn–5RE alloys. These Al–RE intermetallics remained fine and precipitated at the grain boundaries so restraining grain growth during heat treatment at up to 400°C. Although Mg2Si precipitates...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.