Abstract

The present study reports the impact of process conditions and post annealing treatment on the stress and physico-chemical properties in different types of plasma enhanced atomic layer deposited (PEALD) SiNx films. More specifically, the SiNx films deposited at 500 °C were annealed subsequently at 1000 °C in N2 ambient for different times ranging between 30 and 6750 s and were subjected to thickness, mass, refractive index, chemical bonds and structure, H content, N/Si stoichiometry, morphology, roughness, and uniformity monitoring. Depending on the deposition process conditions, we confirm the possibility to form, at 500 °C with PEALD, some very compressive SiN films with reduced hydrogen content by controlling the plasma conditions along the deposition process. More interestingly, these compressive films with low hydrogen concentration exhibit high thermo-mechanical stability compared to hydrogenated PEALD and plasma enhanced chemical vapor deposition silicon nitride from this study or reported in the literature, films which typically tend to become tensile with a similar annealing sequence. These results confirm the importance of the plasma power to engineer the as-deposited silicon nitride stress but also highlight the role of hydrogen in the thermal instability of these layers, a low H concentration being needed for a better mechanical stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call