Abstract
Abstract The structural and electrochemical properties of the as-cast and rapidly solidified Ti0.8Zr0.2V2.4Mn0.48Cr0.72Ni0.9 alloys were studied. Both the as-cast and the rapidly solidified alloys were mainly composed of a C14 Laves phase matrix with hexagonal structure and a V-based solid solution phase with body centered cubic (BCC) structure. The V-based solid solution phase showed very fine dendrites in the rapidly solidified alloy instead of the large dendrites as observed in the as-cast alloy. In addition, the content of the C14 Laves phase in the alloy decreased greatly after rapid solidification. Electrochemical measurements indicated that the rapidly solidified alloy had a lower discharge capacity, a slower activation rate, a worse high rate dischargeability, a smaller exchange current density and limiting current density, but an improved cycle life compared with that of the as-cast alloy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.