Abstract

The hydrogenation properties of Mg 100− x Ni x alloys ( x = 0.5, 1, 2, 5) produced by melt spinning and subsequent high-energy ball milling were studied. The alloys were crystalline and, in addition to Mg matrix, contained finely dispersed particles of Mg 2Ni and metastable Mg 6Ni intermetallic phases. The alloys exhibited excellent hydrogenation kinetics at 300 °C and reversibly absorbed about 6.5 mass fraction (%) of hydrogen. At the same temperature, the as prepared Mg 99.5Ni 0.5 and Mg 95Ni 5 powders dissolved about 0.6 mass fraction (%) of hydrogen at the pressures lower than the hydrogen pressure corresponding to the bulk Mg–MgH 2 two-phase equilibrium, exhibiting an extended apparent solubility of hydrogen in Mg-based matrix. The hydrogen solubility returned to its equilibrium value after prolonged hydrogenation testing at 300 °C. We discuss this unusually high solubility of hydrogen in Mg-based matrix in terms of ultrafine dispersion of nanometric MgH 2 precipitates of different size and morphology formed on vacancy clusters and dislocation loops quenched-in during rapid solidification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.